Unnamed Tributary to Tar River Stream Restoration Louisburg, Franklin County, North Carolina Year 1 Monitoring Report

Monitoring Year: 2006 Measurement Year 1 As-Built Date 2005 NCEEP Project Number 234

January 2007

UNNAMED TRIBUTARY TO TAR RIVER STREAM RESTORATION YEAR 1 MONITORING REPORT

CONDUCTED FOR THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

TABLE OF CONTENTS

I. Ez	xecutive Summary/Project Abstract	1
II.	Project Background	1
	A. Location and Setting	1
	B. Mitigation Structures and Objectives	3
	C. Project History and Background	
III.	Project Condition and Monitoring Results	
	A. Vegetation Assessment	
	1. Soil Data	12
	2. Vegetative Problem Areas	
	3. Stem Counts	12
	4. Vegetation Plot Photos	
	B. Stream Assessment	14
	1. Morphometric Criteria	14
	2. Hydrologic Criteria	14
	C. Wetland Assessment	17

LIST OF FIGURES

Figure 1 Vicinity Map	.2
Figure 2 Monitoring Plan View	.4

TABLES

Table I. Project Mitigation Structure and Objectives Table	3
Table II. Project Activity and Reporting History	
Table III. Project Contact Table	
Table IV. Project Background Table	
Table V. Preliminary Soil Data	
Table VI. Vegetative Problem Areas	
Table VII. Stem Counts for Each Species Arranged by Plot	13
Table VIII. Verification of Bankfull Events	15
Table X. Stream Problem Areas	16
Table XI. Categorical Stream Feature Visual Stability Assessment	17
Table XII. Baseline Morphology and Hydraulic Summary	
Table XIII. Morphology and Hydraulic Monitoring Summary	19

APPENDICIES

Appendix A Vegetation Raw Data

- A-1 Vegetation Survey Data Tables
- A-2 Vegetation Problem Area Photos
- A-3 Vegetation Monitoring Plot Photos

Appendix B Geomorphologic Raw Data

- B-1 Problem Areas Plan View
- B-2 Representative Stream Problem Area Photos
- B-3 Stream Photo-station Photos
- B-4 Qualitative Visual Stability Assessment
- B-5 Cross Section Plots and Raw Data Tables
- B-6 Longitudinal Plots and Raw Data Tables
- B-7 Pebble Count Plots and Raw Data Tables

I. EXECUTIVE SUMMARY/PROJECT ABSTRACT

The Unnamed Tributary to Tar River Restoration Site encompasses 1,937 linear feet of stream restoration located within the Town of Louisburg, Franklin County, North Carolina. The site was constructed between January 2005 and June 2005. The following report provides the stream restoration monitoring information for Year 1 after construction.

The Priority 2 restoration involved converting the 1,792 linear foot impaired channel into a sinuous channel that meanders for a total of 1,937 linear feet. Rock grade control vanes and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A variable width riparian buffer (16'min/150'max) was planted on either side of the stream with native vegetation in December 2005.

Monitoring for the site consisted of evaluating both morphology and vegetation. A few vegetation problem areas were noted on the project. Survival was low during the first year after planting. Only 50 of the original 82 trees and 7 of the original 19 shrubs planted survived providing a density to 225 stems per acre for trees and 256 stems per acre for all woody planted stems (trees and shrubs). This density is below the success criteria threshold for trees at both the 3 and 5 year monitoring period. Replanting will need to occur to increase the stem density so that it may meet the criteria for success at the end of the monitoring period.

Most of the cross sections appeared stable with little or no active bank erosion. Chute formation and a large degree of scour was present at Cross Section 2 and will need to be monitored in the future.

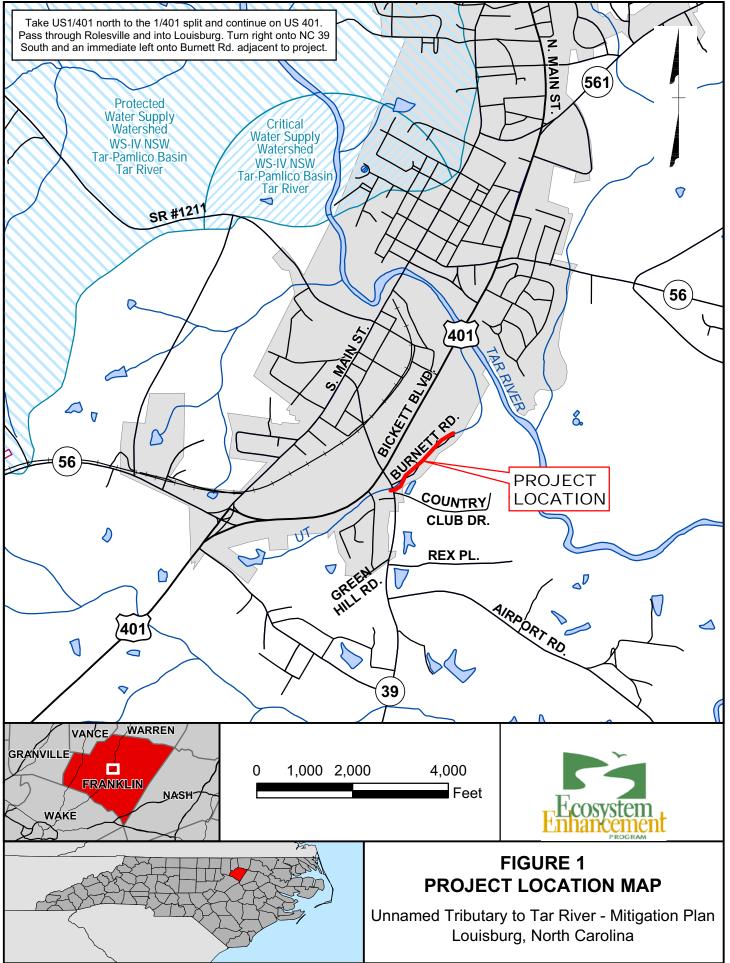
II. PROJECT BACKGROUND

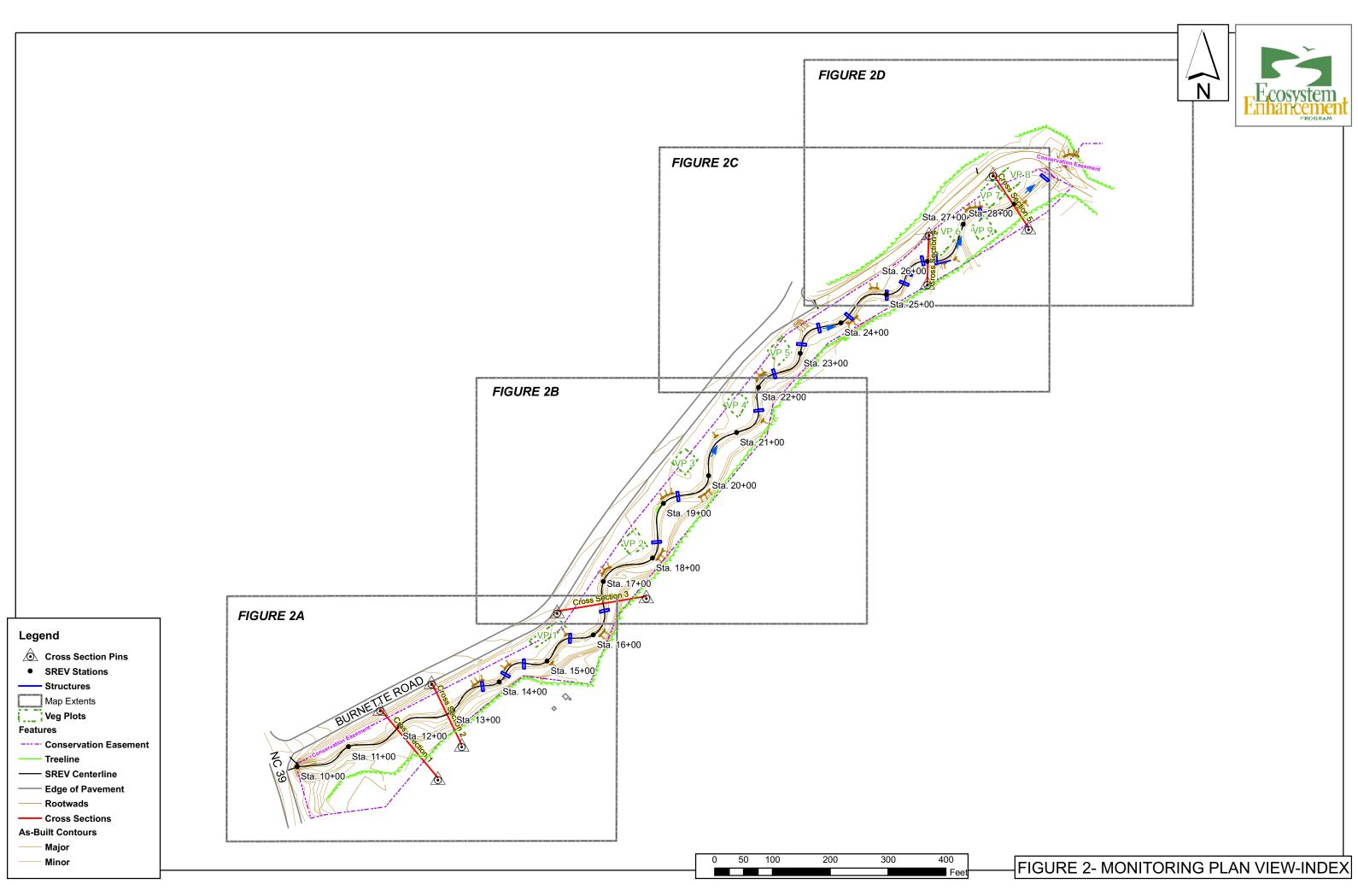
A. Location and Setting

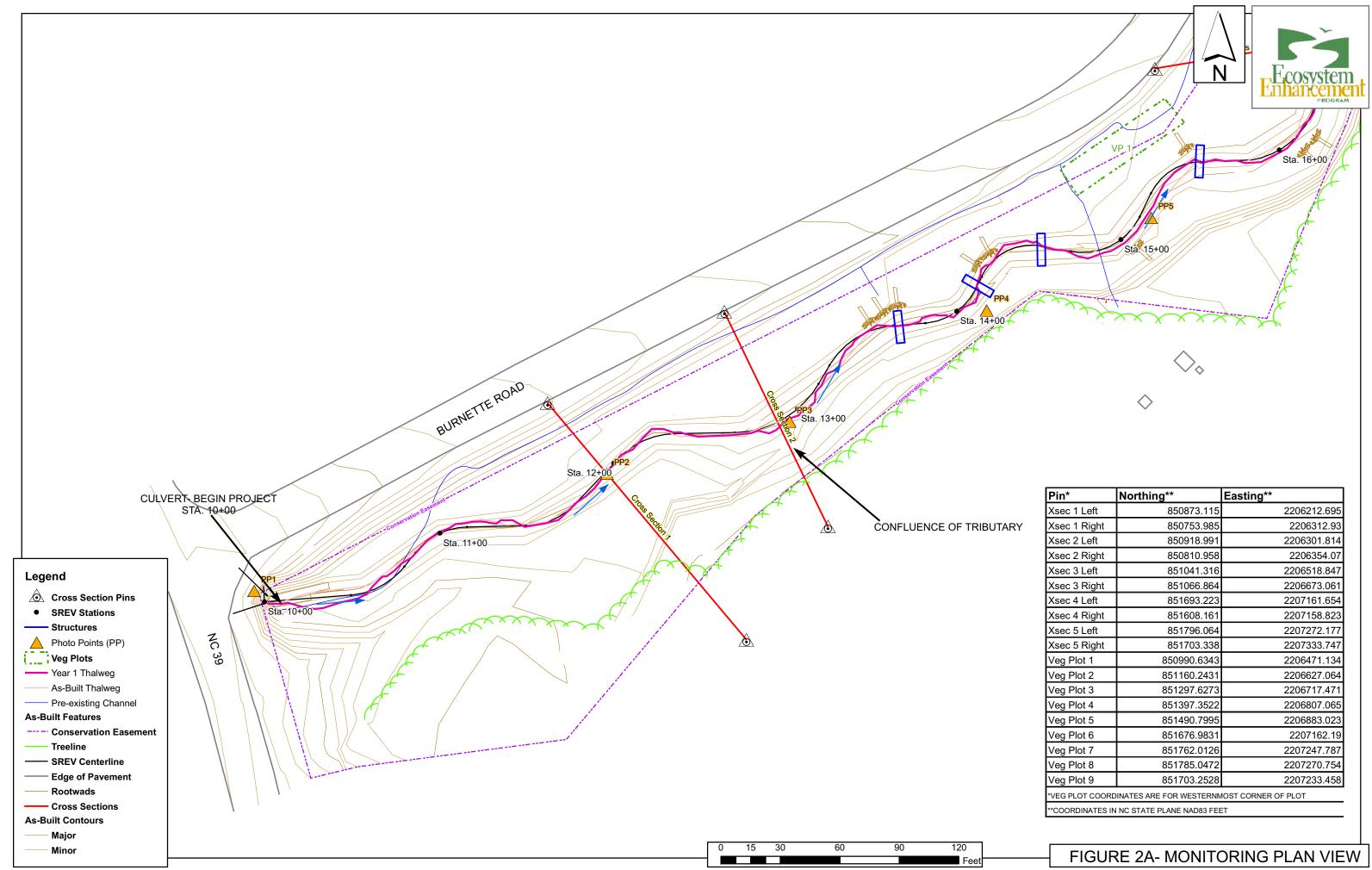
The UT Tar River project site is located in the town of Louisburg in Franklin County, North Carolina (**Figure 1**). Louisburg is located approximately 25 miles north of Raleigh along NC Highway 401. The project site begins at NC Highway 39 and continues towards the northeast between Burnette Road and the Green Hill Country Club. The watershed area for this project is 0.61 square miles. The project is fully contained on publicly owned lands. UT Tar River flows from the southwest to the northeast. The project reach is bound on the west by NC Highway 39, and a small drainage flows off of the country club property and into the conservation easement before entering the UT Tar River from the right bank.

Directions to the site: From Raleigh take US 401 north to Louisburg. Turn right (south) at NC 39 and take the first left onto Burnette Road. The site is on the right running parallel with the road.

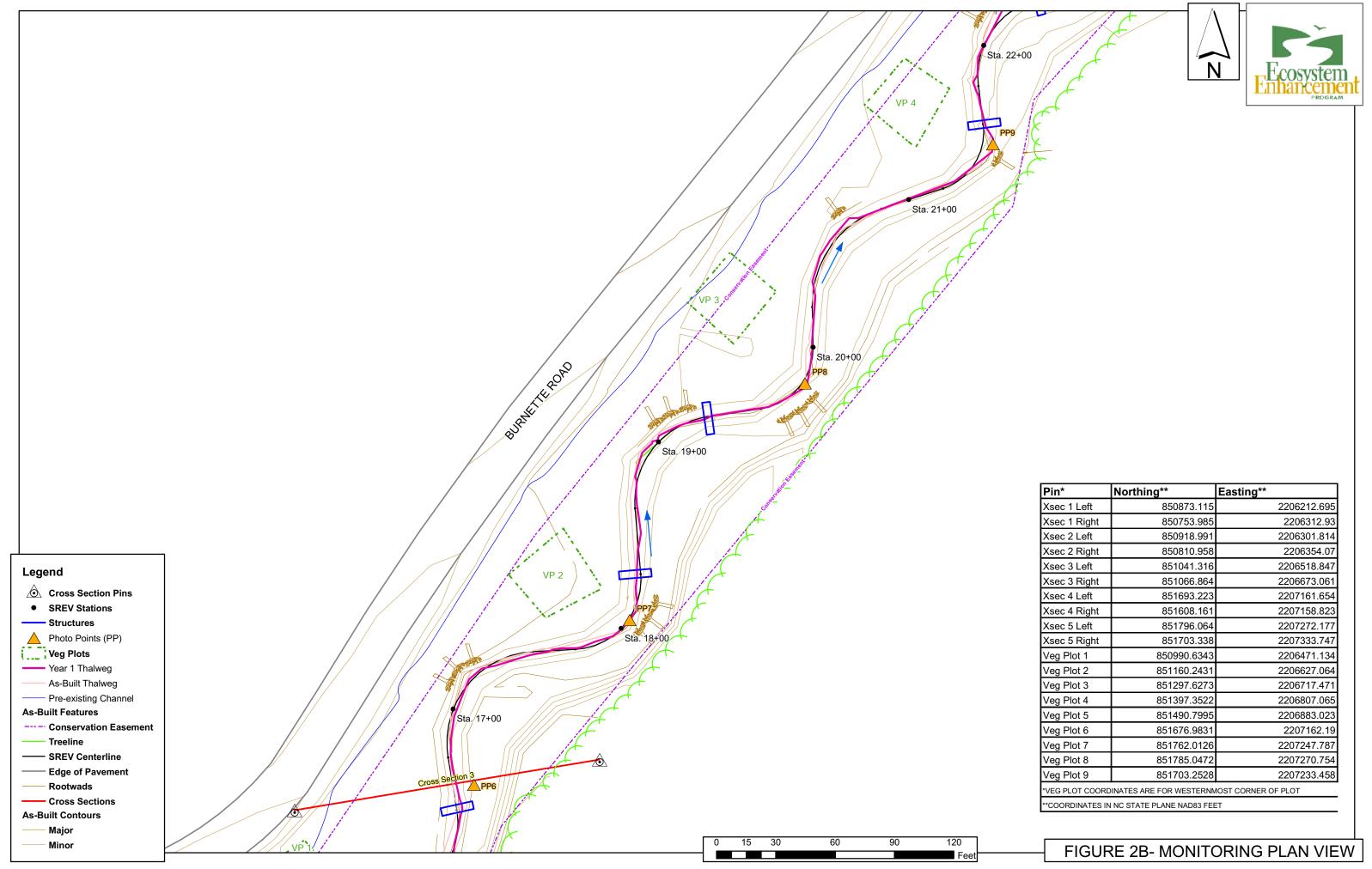
Figure 1 Vicinity Map

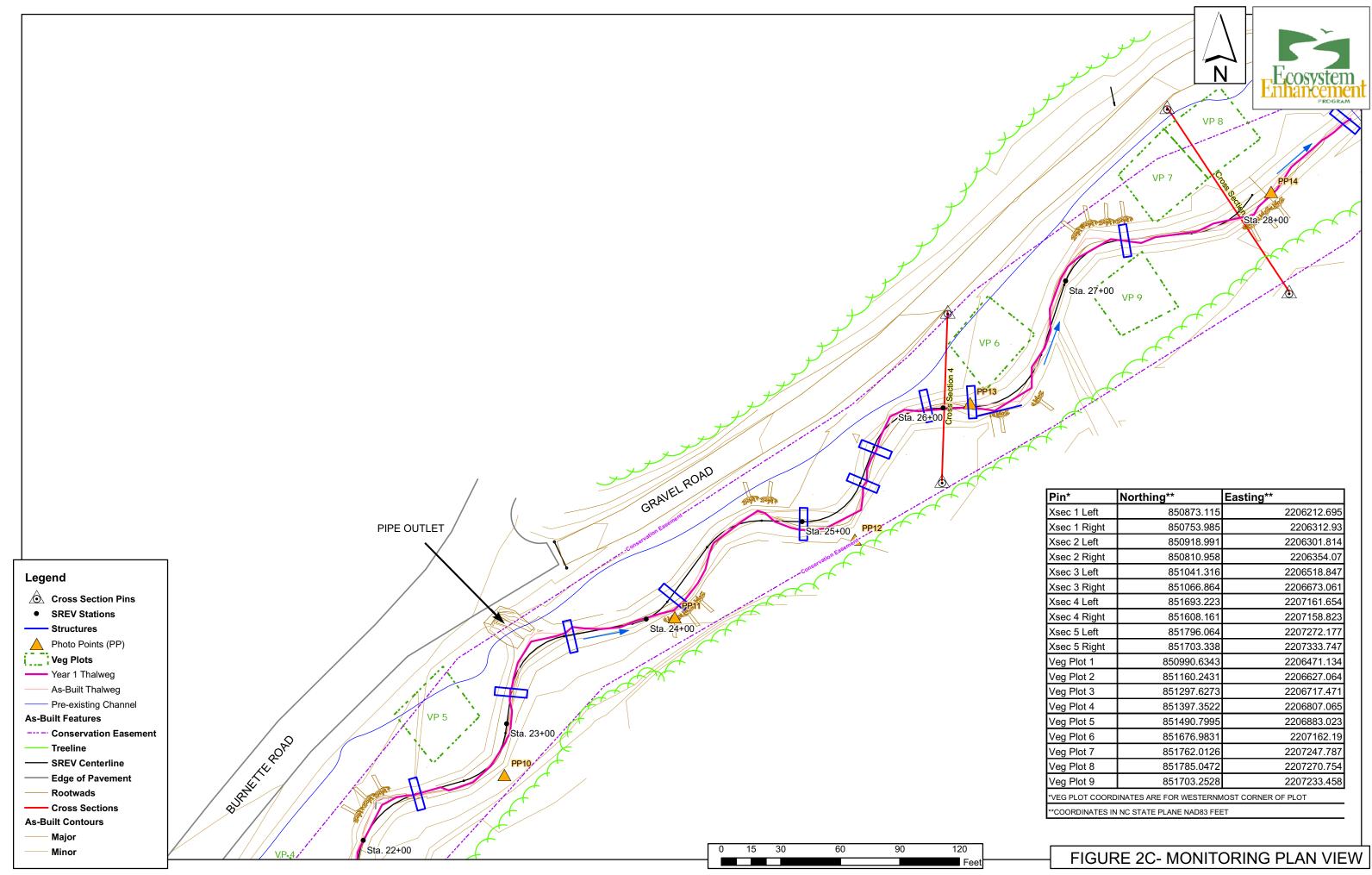

B. Mitigation Structures and Objectives

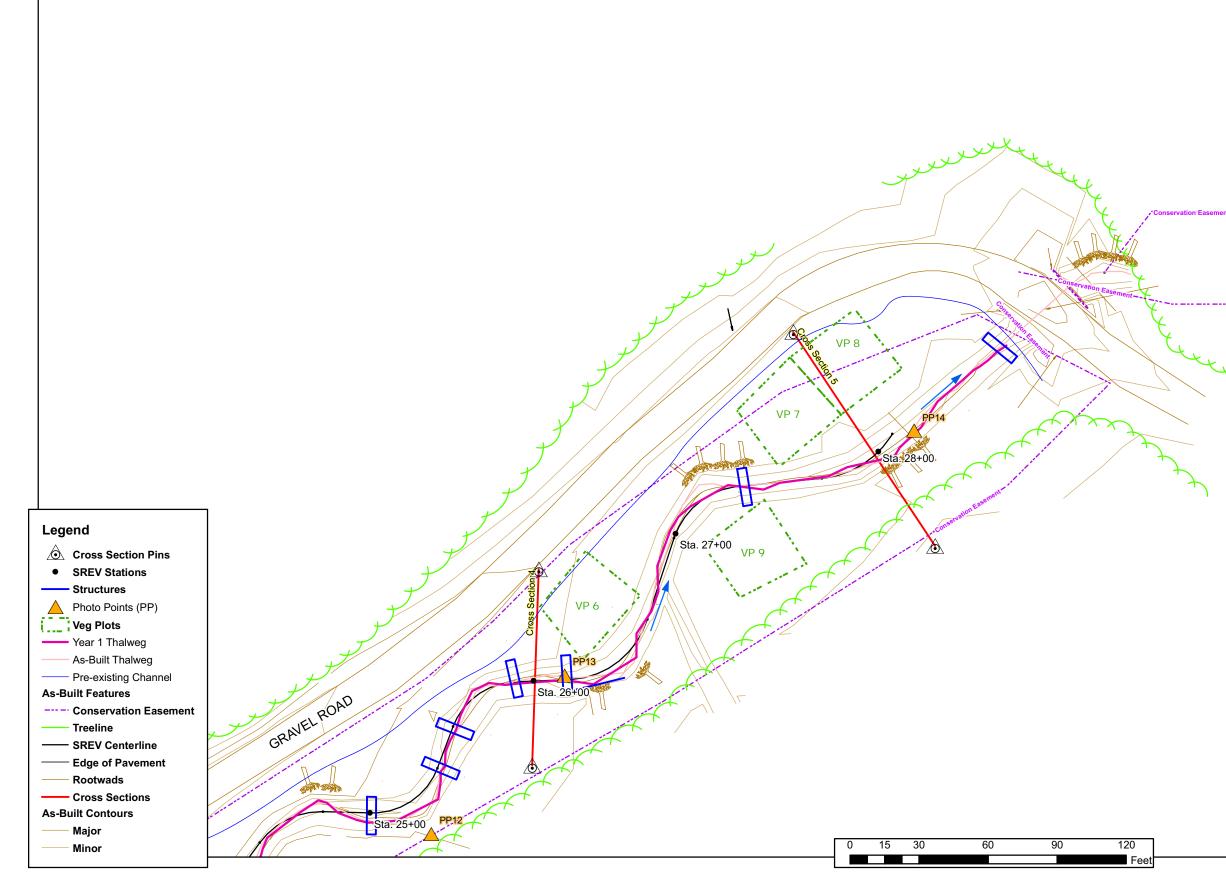

The project is a Priority 2 restoration involving converting the 1,792 linear foot impaired channel into a sinuous channel that meanders for a total of 1,937 linear feet. Rock grade control vanes and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A variable width riparian buffer (16'min/150'max) was planted on either side of the stream with native vegetation (**Figure 2**).

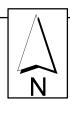

This project has the following goals and objectives:

- Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load.
- Improve water quality and reduce further property loss by stabilizing eroding streambanks.
- Reconnect the stream to its floodplain and/or establish a new floodplain at a lower elevation.
- Improve aquatic habitat with the use of natural material stabilization structures such as root wads, cross-vanes, woody debris, and a riparian buffer.
- Provide aesthetic value, wildlife habitat, and bank stability through the creation of a riparian zone.
- Stabilize and enhance the tributary and small drainage that enters the site.


Table I. Project Mitigation Structure and Objectives TableUT Tar River Stream Mitigation Site/Project No. 234					
Project Segment/Reach ID	Mitigation Type	Approach	Linear Footage	Stationing	Comment
Ut Tar River, 1,792 ft	Restoration	Priority 2	1,937 (CL)	10+00 to 29+37.13	1:1 Ratio




Pin*	Northing**	Easting**		
Xsec 1 Left	850873.115	2206212.695		
Xsec 1 Right 850753.985		2206312.93		
Xsec 2 Left	850918.991	2206301.814		
Xsec 2 Right	850810.958	2206354.07		
Xsec 3 Left	851041.316	2206518.847		
Xsec 3 Right	851066.864	2206673.061		
Xsec 4 Left	851693.223	2207161.654		
Xsec 4 Right	851608.161	2207158.823		
Xsec 5 Left	851796.064	2207272.177		
Xsec 5 Right	851703.338	2207333.747		
Veg Plot 1 850990.6343		2206471.134		
Veg Plot 2 851160.2431		2206627.064		
Veg Plot 3 851297.6273		2206717.471		
Veg Plot 4 851397.3522		2206807.065		
Veg Plot 5	851490.7995	2206883.023		
Veg Plot 6	851676.9831	2207162.19		
Veg Plot 7	851762.0126	2207247.787		
Veg Plot 8 851785.0472		2207270.754		
Veg Plot 9 851703.2528		2207233.458		
*VEG PLOT COORDINATES ARE FOR WESTERNMOST CORNER OF PLOT				
**COORDINATES IN NC STATE PLANE NAD83 FEET				



Pin*	Northing**	Easting**			
Xsec 1 Left	850873.115	2206212.695			
Xsec 1 Right	850753.985	2206312.93			
Xsec 2 Left	850918.991	2206301.814			
Xsec 2 Right	850810.958	2206354.07			
Xsec 3 Left	851041.316	2206518.847			
Xsec 3 Right	851066.864	2206673.061			
Xsec 4 Left	851693.223	2207161.654			
Xsec 4 Right	851608.161	2207158.823			
Xsec 5 Left	851796.064	2207272.177			
Xsec 5 Right	851703.338	2207333.747			
Veg Plot 1	850990.6343	2206471.134			
Veg Plot 2	851160.2431	2206627.064			
Veg Plot 3	851297.6273	2206717.471			
Veg Plot 4 851397.		2206807.065			
Veg Plot 5	851490.7995	2206883.023			
Veg Plot 6	851676.9831	2207162.19			
Veg Plot 7	851762.0126	2207247.787			
Veg Plot 8	851785.0472	2207270.754			
Veg Plot 9 851703.2528		2207233.458			
*VEG PLOT COORDINATES ARE FOR WESTERNMOST CORNER OF PLOT					
**COORDINATES IN	I NC STATE PLANE NAD83 FEE	ET			

Pin*	Northing**	Easting**		
Xsec 1 Left	850873.115	2206212.695		
Xsec 1 Right	850753.985	2206312.93		
Xsec 2 Left	850918.991	2206301.814		
Xsec 2 Right	850810.958	2206354.07		
Xsec 3 Left	851041.316	2206518.847		
Xsec 3 Right	851066.864	2206673.061		
Xsec 4 Left	851693.223	2207161.654		
Xsec 4 Right	851608.161	2207158.823		
Xsec 5 Left	851796.064	2207272.177		
Xsec 5 Right	851703.338	2207333.747		
Veg Plot 1	850990.6343	2206471.134		
Veg Plot 2	851160.2431	2206627.064		
Veg Plot 3	851297.6273	2206717.471		
Veg Plot 4	851397.3522	2206807.065		
Veg Plot 5	851490.7995	2206883.023		
Veg Plot 6	851676.9831	2207162.19		
Veg Plot 7	851762.0126	2207247.787		
Veg Plot 8	851785.0472	2207270.754		
Veg Plot 9 851703.2528		2207233.458		
*VEG PLOT COORDINATES ARE FOR WESTERNMOST CORNER OF PLOT				
**COORDINATES IN NC STATE PLANE NAD83 FEET				

Pin*	Northing**	Easting**		
Xsec 1 Left	850873.115	2206212.695		
Xsec 1 Right	850753.985	2206312.93		
Xsec 2 Left	850918.991	2206301.814		
Xsec 2 Right	850810.958	2206354.07		
Xsec 3 Left	851041.316	2206518.847		
Xsec 3 Right	851066.864	2206673.061		
Xsec 4 Left	851693.223	2207161.654		
Xsec 4 Right	851608.161	2207158.823		
Xsec 5 Left	851796.064	2207272.177		
Xsec 5 Right	851703.338	2207333.747		
Veg Plot 1	850990.6343	2206471.134		
Veg Plot 2	851160.2431	2206627.064		
Veg Plot 3	851297.6273	2206717.471		
Veg Plot 4	851397.3522	2206807.065		
Veg Plot 5	851490.7995	2206883.023		
Veg Plot 6	851676.9831	2207162.19		
Veg Plot 7	851762.0126	2207247.787		
Veg Plot 8	851785.0472	2207270.754		
Veg Plot 9 851703.2528		2207233.458		
*VEG PLOT COORDINATES ARE FOR WESTERNMOST CORNER OF PLOT				
**COORDINATES IN NC STATE PLANE NAD83 FEET				

FIGURE 2D- MONITORING PLAN VIEW

C. Project History and Background

The town manager of Louisburg, C. L. Gobble, first identified the UT Tar River as a potential restoration site. His main concern was that streambank erosion would undercut Burnette Road. The lack of vegetation on the banks was one of the main causes of degradation along with past alterations to the stream course. Recent utility work by the town also caused additional channel instability. Typical of many urban streams, the UT Tar River channel was an oversized gully. The town had placed riprap in the channel in some areas to prevent undercutting. Vegetation across the site was minimal due to channel degradation and other disturbances. The combination of extreme streambank erosion, lack of vegetation, and a signed conservation easement made this an excellent potential restoration site.

Table II. Project Activity and Reporting History							
Unnamed Tributary to Tar River Stream Mitigation Site/Project No. 234							
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion Date				
Restoration Plan			June 2003				
Final Design - 90%			Unknown				
Construction			July 26, 2005				
Temporary S&E mix applied to entire project area			Throughout Construction				
Permanent seed mix applied to entire project area			Throughout Construction				
Containerized, B&B, and livestake plantings			December 22, 2005				
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	April 2006	April 2006	May 2006				
Year 1 Monitoring	Fall 2006	January 2007	January 2007				
Year 2 Monitoring	Fall 2007						
Year 3 Monitoring	Fall 2008						
Year 4 Monitoring	Fall 2009						
Year 5 Monitoring	Fall 2010						

	Table III. Project Contact Table				
UT Tar l	River Stream Restoration Site/Project No. 234				
Designer POC Earth Tech					
5	701 Corporate Center Drive				
	Suite 475				
	Raleigh, NC 27607				
Bill Jenkins PE (919) 854-6200					
Construction Contractor POC	McQueen Construction				
Construction Contractor 10C	619 Patrick Road				
	Bahama, NC 27503				
	Harvey McQueen				
	(919) 479-4766				
	Carolina Environmental Contracting, Inc.				
Planting Contractor POC	P.O. Box 1905				
Flanting Contractor FOC	Mount Airy, NC 27030 Joanne Cheatham				
	(336) 320-3849				
	Erosion Solutions				
	5508 Peakton Dr.				
Seeding Contractor POC	Raleigh, NC 27614				
	Ross Rebne				
<u> </u>	(919) 845-5550				
Seed Mix Sources	Not provided by contractor				
	Coastal Plain Conservation Nursery (container plants)				
	Ellen Colodney 3067 Conners Drive				
	Edenton, NC 27932				
	252-482-5707				
	Cure Nursery (container plants)				
	Jennifer Cure				
	880 Buteo Road				
	Pittsboro NC 27312				
	919-542-6186				
Nursery Stock Suppliers					
	Gilmore Plant and Bulb Co. Inc. (ball and burlap) Tom Gilmore				
	PO Box 8				
	Julian, NC 27283				
	336-685-4451				
	Earner Maustain Numeric (line at land)				
	Foggy Mountain Nursery (live stakes) Glen Sullivan				
	13213A Hwy 88 W				
	Creston, North Carolina 28615				
	336-385-2222				
Monitoring Performers	Earth Tech				
	701 Corporation Center Drive, Suite 475				
Raleigh, NC 27607 Mr. Ron Johnson (919) 854-6210					
Stream Monitoring	Ron Johnson				
Vegetation Monitoring	· · · · · · · · · · · · · · · · · · ·				
Wetland Monitoring					
wenanu wonton mg	No wetlands monitoring required.				

Table IV. Project Background Table					
Unnamed Tributary to Tar River Stream Mitigation Site/Project No. 234					
Project County Franklin					
Drainage Area					
UT Tar River	0.61 sq mi				
Drainage impervious cover estimate (%)	> 30 %				
Stream Order					
UT Tar River	1st order				
Physiographic Region	Piedmont				
Ecoregion	Northern Outer Piedmont				
Rosgen Classification of As-Built	С				
Cowardin Classification	NA				
Dominant Soil Types	Chewacla and Wehadkee loam				
	Wedowee-Urbanland_Udorthents complex				
Reference site ID	C5 UT Lake Lynn (Wake), C4 UT Hare Snipe Creek (Wake)				
USGS HUC for Project	03020101				
USGS HUC for Reference	Ut Lake Lynn 03020201, UT Hare Snipe Creek 03020201				
NCDWQ Sub-basin for Project	030301				
NCDWQ Sub-basin for Reference	Ut Lake Lynn 030402, UT Hare Snipe Creek 030402				
NCDWQ Classification for Project	Not Assigned				
NCDWQ Classification for Reference	UT Lake Lynn B-NSW, UT Hare Snipe Creek C-NSW				
Any portion of any project segment 303D listed?	No				
Any portion of any project segment upstream of a 303D listed segment?	No				
Reasons for 303D listing or stressor	NA				
% of project easement fenced	<5%				

III. PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment

The final vegetative success measure will be the survival of 260 5-year old planted trees per acre at the end of year 5 of the monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year three of the monitoring period.

1. Soil Data

Table V. Preliminary Soil Data UT Tar Stream Mitigation Site/ Project No. 234					
Series	Max Depth (in.)	% Clay on Surface	К	Т	OM%
Chewacla and Wehadkee Loam	62	6-35	0.28-0.32	5	1-5
Wedowee Sandy Loam	62	5-45	0.24-0.28	4	0.5-3
Wedowee-Urbanland-Udorthents Complex	62	5-20	0.24-0.28	4	0.5-3

2. Vegetative Problem Areas

Table VI. Vegetative Problem AreasUT Tar Stream Mitigation Site/ Project No. 234											
Feature/Issue	Station#/Range	Probable Cause	Photo #								
Disturbance	27+08.2	Golf course maintenance intrusion	VPA1								
Bank Erosion/Piping	18+83.669	Banks too steep	VPA3								
Failure	13+85.856	Banks too steep	VPA4								
	12+88.907	Banks too steep	VPA5								
Bare Bench	18+83.669	Chute formation	VPA2								
	11+46.112	Vegetation scoured away by storm	VPA6								

A few vegetation problem areas were noted on the project. One of the problems areas was caused by golf course personnel coming onto the easement to construct/maintain ditches that drain a wetland that occurs between the golf course and the stream. Movement associated with this work caused mortality and ground disturbance in and around vegetation plot 9. The most common vegetation problem area that was encountered on the project was erosion/piping failure that was occurring on the steep banks adjacent to the golf course that remained following the lowering of the grade to create the floodplain. The combination of sandy soils and heavy recent precipitation are causing some of the bank edges to slough off. Flooding and chute formation associated with bankfull events is causing vegetation removal to occur in two areas. Stream repairs to these locations will be necessary before any replanting occurs to ensure future success.

A vegetative problem area plan view is located in Appendix A.

3. Stem Counts

Baseline vegetation plots were established on January 31, 2006 after vegetative planting was completed in December 2005. Nine (9) vegetation survival plots were staked out in the floodplain of

UT Tar River. Eight (8) of these plots measured 10m X 10m and the remaining plot measured 5m X 20m to enable placement within the easement area. Survival of rooted vegetation will be evaluated using the nine plots and will continue for at least 5 years to determine survival. Stems were flagged and counted to establish baseline stem counts in 2006 and a Year 1 monitoring stem count was performed on October 4, 2006.

Tree species planted include hackberry (*Celtis laevigata*), green ash (*Fraxinus pennsylvanica*), cherrybark oak (*Quercus pagodafolia*), water oak (*Quercus nigra*), willow oak (*Quercus phellos*), river birch (*Betula nigra*), sycamore (*Platanus occidentalis*), and black gum (*Nyssa sylvatica*). Live stakes and shrubs were also planted in this project. Live stake species including silky dogwood (*Cornus amomum*), buttonbush (*Cephalanthus occidentalis*), silky willow (*Salix sericea*), black willow (*Salix nigra*), and elderberry (*Sambucus canadensis*) were planted along the channel and tops of the bank. Shrub species were planted in the floodplain and concentrated along the tops of the bank and include elderberry, spicebush (*Lindera benzoin*), tag alder (*Alnus serrulata*), wax myrtle (*Myrica cerifera*), clematis (*Clematis virginiana*), and possumhaw (*Viburnum nudum*).

Tat	ole VII.				ch Speo roject I			by Plo	ot		
Species		MY1 Totals									
	1	2	3	4	5	6	7	8	9		
Trees					•						
Nyssa sylvatica	2	0	1	2	0	0	0	0	0	5	
Quercus pagodafolia	0	1	1	1	0	2	1	0	0	6	
Fraxinus pennsylvanica	4	0	0	0	1	2	1	0	0	8	
Betula nigra	1	6	1	0	0	1	0	1	1	11	
Celtis laevigata	0	0	1	0	0	0	0	0	0	1	
Platanus occidentalis	1	3	0	0	0	1	1	1	2	9	
Quercus nigra	2	1	2	1	0	0	0	0	0	6	
Quercus phellos	1	2	0	0	0	1	0	0	0	4	
Totals	11	13	6	4	1	7	3	2	3	50	
Shrubs											
Sambucus canadensis	0	0	0	0	0	0	1	0	0	1	
Viburnum nudum	0	0	0	0	0	1	0	0	0	1	
Lindera benzoin	0	0	0	0	0	0	0	0	0	0	
Alnus serrulata	0	0	0	0	0	1	0	0	2	3	
Myrica cerifera	1	0	0	0	0	0	0	0	1	2	
Clematis virginiana	0	0	0	0	0	0	0	0	0	0	
Totals	1	0	0	0	0	2	1	0	3	7	

The baseline vegetation assessment revealed an average of 369 trees per acre across the restoration easement area. Survival was low during the first year after planting. Only 50 of the original 82 trees and 7 of the original 19 shrubs planted survived. This ratio represents a ratio of 61% survival of the trees and 37% survival of the shrubs. This brings the density to 225 stems per acre for trees only and 256 stems per acre for all woody planted stems. This density is below the success criteria threshold for trees at both the 3 and 5 year monitoring period. Replanting will need to occur to increase the stem density so that it may meet the criteria for success at the three-year monitoring period. Mortality likely occurred due to stress-related factors. Soil compaction and droughty conditions were likely contributors to mortality.

A small portion of the reduced survival may be attributed to the disturbance that occurred in VP-09 when the golf course maintenance crew dug out the drainage ditches that are currently connecting the golf course and the stream. One new ditch crosses VP-09 and disturbance occurred to the vegetation plot as a result of vehicle movement associated with constructing/maintaining these ditches.

Many of the flags placed on planted stems were no longer in place during the MY1 stem counts causing differences in stems counts not attributed to low survivability.

A table showing the changes in stems counts from the baseline count to MY1 is shown in Appendix A.

4. Vegetation Plot Photos

Photos of the vegetation plots are located in Appendix A.

B. Stream Assessment

The restored reach should remain stable or if changes occur the movement should be in the direction of increased stability. There should be insignificant changes in channel cross-section and longitudinal profile from the as-built condition. The pool/riffle spacing should remain constant. Pools should not be filling in or riffles starting to change to pools. Pebble counts should show a coarsening of the bed material.

1. Morphometric Criteria

Cross section and longitudinal surveys were performed on January 17 - 18, 2007. Five cross sections and approximately 1,937 linear feet of stream were surveyed. Photographs were taken at all permanent photo points and a bed material analysis was performed on January 19, 2007.

Cross sections are located at the following locations.

Cross Section #1, Station 11+93.802, midpoint of pool Cross Section #2, Station 12+93.065, midpoint of riffle Cross Section #3, Station 16+59.371, midpoint of riffle Cross Section #4, Station 26+13.491, midpoint of riffle Cross Section #5, Station 28+15.918, midpoint of run

Most of the cross sections appeared stable with little or no active bank erosion. Only one cross section had a problem area at its location. Chute formation and a large degree of scour was present at Cross Section 2 and will need to be monitored in the future. Survey data collected during future monitoring periods may vary depending on actual rod placement and alignment; however, from this point forward this information should remain similar in overall appearance.

2. Hydrologic Criteria

Monitoring requirements state that at least two bankfull events must be documented through the fiveyear monitoring period. No surface water gauges exist on UT Tar River or its tributaries. A review of known U.S. Geological Survey (USGS) surface water gauges identified three surface water gauges within 20 miles of the mitigation site: one on the Tar River at Louisburg (427.0 square miles), one on Swift Creek at Hilliardston (166.0 square miles), and one on Little Fishing Creek west of White Oak (177.0 square miles). None of the three sites have a comparable drainage area to the UT Tar River (0.61 square miles) and do not appear to be suitable for use in determining occurrence of bankfull events. Evidence of bankfull deposits from previous events were observed on January 3, 2007. In order to determine future bankfull events for the site it may be necessary to install a stream gauge onsite since comparison to nearby gauges will not be possible given the large difference in watershed area between existing stream gauges and the project stream.

Table VIII. Verification of Bankfull Events UT Tar River Stream Mitigation Site/Project No. 234									
Date of Data	Date of Occurrence	Method	Photo #						
Collection			(if available)						
2007	Unknown 2006	Photographic - Near Bankfull	Shown below						

Evidence of bankfull event deposition on January 3, 2007.

Table IX is not applicable to the MY1 Monitoring Report.

Table X. Stream Problem Areas UT Tar Stream Mitigation Site/ Project No. 234											
Feature/Issue	Station#/Range	Probable Cause	Photo #								
Aggradation/Bar Formation	28+23.087	Aggradation in stream - Incorrect grade or dimension	SPA 1								
	27+29.703	Point bar formation above sill-sill in wrong location	SPA 4								
	26+20.516	Buried structure-Incorrect dimension and structure in wrong location	SPA 7								
	20+62.578	Aggradation on point bar-Incorrect grade or dimension	SPA 12								
	18+83.669	Chute cutoff and point bar formation-channel possibly over-sinuous, or bankfull dimensions incorrect.	SPA 14								
	14+57.725	<i>Transverse bar formation</i> -Incorrect grade or dimension	SPA 17								
	11+46.112	Bar formation/undercut matting-Incorrect grade or dimension	SPA 20								
Bank Scour	28+10.430	<i>Undercut matting</i> -bank revetment insufficiently resistant to flow.	SPA 2								
	26+90.480	Matting exposed/bar formation/ ditch dug into stream - incorrect dimensions and bank revetment insufficiently resistant	SPA 5								
	26+43.917	Undercut matting and point bar formation - Incorrect dimensions and bank revetment insufficiently resistant	SPA 6								
	24+53.274	Bank erosion on right bank - bank revetment insufficiently resistant	SPA 10								
	19+61.645	Undercutting on left bank-bank revetment insufficiently resistant	SPA 13								
	17+26.805	Undercut matting-bank revetment insufficiently resistant	SPA 15								
	16+06.585	<i>Piping failure/hillside erosion</i> -slope grade too steep and insufficient vegetation stabilization	SPA 16								
	14+03.108	<i>Excessive piping failure/ bank erosion and</i> <i>sediment deposition</i> - slope grade too steep and insufficient vegetation stabilization	SPA 18								
	12+97.150	Chute formation and scour - channel possibly too sinuous	SPA 19								
	10+27.461	<i>Heavily eroded bank/ bar formation</i> – high- velocity, constricted flow from culvert	SPA 21								
Engineered Structures	25+44.777	<i>Riffle formed into a pool</i> - Incorrect location of structure and incorrect dimension	SPA 8								
	24+89.569	Erosion behind cross-vane	SPA 9								
	23+89.110	Backwater pool formation - insufficient dimension	SPA 11								
Other Disturbance	26+83.995	Runoff ditch dug deeper by golf course maintenance	SPA 3								

Table XI. Categorical Stream Feature Visual Stability AssessmentUT Tar River Stream Mitigation Site/Project No. 234											
Feature	Initial	MY-01	MY-02	MY-03	MY-04						
A. Riffles	100%	10%*									
B. Pools	100%	33%									
C. Thalweg	100%	NA									
D. Meanders	100%	75%									
E. Bed General	100%	50%									
F. Vanes/J Hooks etc.	100%	60%									
G. Wads and Boulders	100%	100%									

*Riffle locations on stream greatly deviate from the designed locations, probably due to the presence of structures at the head of most riffles which have caused pool formation below the structures.

Tables XI and XII provide baseline morphology and hydraulic information for the restored stream reach.

C. Wetland Assessment

There is no wetland restoration associated with this site therefore this table is not applicable to this project.

								Morphol eam Miti				ry							
Parameter	US	SGS D	ata		onal C Interva				e-Existing ondition		Project Reference Stream			Design		As-built			
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
BF Width (ft)				5.5	21.0	11.3	10.2	13.8		10	19.1				18.0	17.6	25.2	20.5	
BF Cross Sectional Area (ft ²)				6.2	28	15.3	20.8	28.1		5.5	23.4				24.5	19.8	35.1	23.3	
BF Mean Depth (ft)				0.75	2.1	1.4			2.0	0.55	1.22				1.38	1.0	1.4	1.25	
BF Max Depth (ft)							2.8	3.3		1.0	2.26				2.2	2.0	2.7	2.35	
Width/Depth Ratio							5.0	6.8		10.3	20.6				13.2	13.0	20.2	18.7	
Entrenchment Ratio							3.9	4.0		1.9	6.6				2.2	2.4	5.0	3.4	
Wetted Perimeter (ft)																20.3	28.0	22.6	
Hydraulic radius (ft)																0.90	1.3	1.08	
Pattern									•		•				<u>I</u>				
Channel Beltwidth (ft)							8	30		17	41		23	58		29	66	43	
Radius of Curvature (ft)							10	60		12	81		36	72		28	58	34.5	
Meander Wavelength							265	470		42	59		59	84		80	165	121	
Meander Width ratio							0.7	2.5		1.3	3.2		1.3	3.2		1.64	2.61	2.2	
Profile									•		•				<u>I</u>				
Riffle length (ft)							14	316	83							1.50	51.70	13.10	
Riffle slope (ft/ft)							0.0018	0.0171	.0115	0.0085	0.075		0.0085	0.0333		0.00	0.04	0.01	
Pool length (ft)							10	102	42							3.30	20.70	9.80	
Pool spacing (ft)							33	379	226	32	75		32	75		13.60	158.30	57.93	
Substrate					•				•		•								
d50 (mm)							0.5	1.0		0.25	0.5					0.062	0.25		
d84 (mm)							5.7	8.0		11.3	16.0					0.25	0.5		
Additional Reach Parameters					,														
Valley Length (ft)									1662									1662	
Channel Length (ft)									1792									1937	
Sinuosity									1.07	1.25	1.7				1.25			1.17	
Water Surface Slope (ft/ft)									0.0068	0.0050	0.0161				0.0042			0.01	
BF slope (ft/ft)									0.0061									0.01	
Rosgen Classification									E5	C4	C5				C4				
Habitat Index																			
Macrobenthos																			

			Ta								ng Sumi t No. 234									
Parameter	Cross Section 1					oss Sectio							oss Secti	on 4		Cross Section 5				
		1+94 P	ool		2	+91 Riffl	e		6+65 Riffle				16+42 Riffle				18+49 Run			
Dimension	MY0	MY	I MY	(2]	MY0	MY1	MY2	MY	0 1	MY1	MY2	MY0	MY1	MY	2 M	Y0	MY1	MY2		
BF Width (ft)	22.9	13.0)		25.2	31.29		17.6	5	17.66		21.0	11.53		20	0.0	15.69			
Floodprone Width (ft)		77.6	1		91	83.05		100-	∟ 1	28.11		90	85.9			100	112.79			
(approx)		//.0	·		71	05.05		100	' I	20.11		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	05.7			100	112.79			
BF Cross Sectional Area (ft ²)	21.7	11.7	5		35.1	23.89		23.7	/ 2	20.53		22.9	10.93		19	9.8	10.75			
BF Mean Depth (ft)	0.9	0.9			1.4	0.76		1.4		1.16		1.1	0.95			.0	0.69			
BF Max Depth (ft)	2.6	1.78			2.4	1.94		2.7		2.59		2.3	1.74		2	2.0	1.37			
Width/Depth Ratio		14.4			18.0	41.17		13.0		15.22		19.3	12.14		20	0.2	22.74			
Entrenchment Ratio		5.97			3.6	2.65		5.6		7.25		4.3	7.45		5	5.0	7.19			
Wetted Perimeter (ft)		13.7	1		28.0	33.17		20.3		19.03		23.2	12.18		22	2.0	16.73			
Hydraulic radius (ft)		0.86			1.3	0.72		1.17	7	1.08		1.0	0.9		0).9	0.64			
Substrate																				
d50 (mm)	.1252				2525	1.05			.25 0			.12525				5212				
d84 (mm)	.255	8.41		.2	255	6.27		.255	5 3	.33		.255	1.46		.25	55	0.96			
Parameter	M	Y-01 (200)6)	M	MY-02 (2007)		MY	-03 (2008)		MY-04 (2		.009) MY-05		-05 (20	5 (2010)		MY+ (20)11)		
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Mir	n Max	Med	Min	Max	Med	Min	n Max	Med		
Channel Beltwidth (ft)	8.86	46.2	26.9		66															
Radius of Curvature (ft)	13.5	68.91	29.7																	
Meander Wavelength (ft)	77.2	160.9	121.																	
Meander Width Ratio	0.5	2.59	1.5																	
Profile																		_		
Riffle Length (ft)	21.1	60	33			_												_		
Riffle Slope (ft/ft)	.005	.043	.01																	
Pool length (ft)	7.3	90.1	25.7																	
Pool spacing (ft)	6	69	30.8																	
Additional Reach																				
Parameters		1.6.62		1			1									1				
Valley Length (ft)		1662								_										
Channel Length (ft)		1937								_										
Sinuosity		1.17																		
Water Surface Slope (ft/ft)		.01																		
BF Slope (ft/ft)		.01								_										
Rosgen Classification		C4																		
Habitat Index*																				
Macrobenthos*																				

Click on the Desired Link Below

Appendix A

Appendix B